УДК 517.574

O. P. GNATIUK, A. A. KONDRATYUK

SUBHARMONIC FUNCTIONS AND ELECTRIC FIELDS IN BALL LAYERS. II

O. P. Gnatiuk, A. A. Kondratyuk. Subharmonic functions and electric fields in ball layers. II, Mat. Stud. **35** (2011), 50–59.

In this sequel to [1] we study a special case $BL(\frac{1}{r}, r), r > 1$. Also the explicit representation of a subharmonic extension for a subharmonic function u(x) near a removable point is obtained. Moreover, the diverse Nevanlinna characteristics are compared.

О. П. Гнатюк, А. А. Кондратюк. Субгармоничиские функции и электрические поля в шаровых прослойках. II // Мат. Студії. – 2011. – Т.35, №1. – С.50–59.

В этом продолжении к [1] мы изучаем особый случай $BL(\frac{1}{r},r), r > 1$. Также получено представление в явной форме субгармонического продолжения субгармонической функции u(x) в окрестности устранимой точки. Кроме того сравниваются различные Неванлинновские характеристики.

Introduction. Let D be an open set in the Euclidian space $\mathbb{R}^m (m \ge 3)$ and F a compact subset of D. It is a classical result (see [2], Theorem 5.18, p. 255) that if u is subharmonic in $D \setminus F$ and bounded from above and moreover F is polar, then u has a subharmonic extension to the whole of D. Gardiner [3] has shown that, in the case of a compact exceptional set the above boundedness condition can be relaxed by imposing certain smoothness and Hausdorff measure conditions on the set. Riihentaus [4] has replaced the smoothness and Hausdorff measure conditions with one sole condition on Minkowski upper content. It has been established in [5] that if u is a subharmonic function in $D \setminus F$ and bounded from above, where F is a closed polar set, then the function

$$\widetilde{u}(x) = \begin{cases} u(x), & (x \in D \setminus F), \\ \lim_{y \to x, \ y \notin F} u(y), & (x \in F), \end{cases}$$

is subharmonic in D. In this sequel to [1] we give an explicit representation of a subharmonic extension of u near a removable point. The approach presented here appears to be new. It allows us to give a comparison of T(+0, r; u) and T(r, u) for subharmonic functions in a ball. In this paper we also investigate subharmonic functions on symmetric ball layers.

We use results of the first part [1].

4. Subharmonic functions on symmetric ball layers. Consider a subharmonic function u on $\overline{BL(\frac{1}{r}, r)}$, non identical $-\infty$, and define

$$N_0(r;u) := (m-2) \int_1^r \frac{n(t)}{t^{m-1}} dt - \frac{(m-2)}{r^{m-2}} \int_{\frac{1}{r}}^1 \frac{n(t)}{t^{m-1}} dt,$$

²⁰¹⁰ Mathematics Subject Classification: 31B05.

where n(t) is the distribution function of the Riesz measure μ of the function u (see Definition 1 from [1]).

Corollary 1. Let u be a subharmonic function, non identical $-\infty$, in $\overline{BL(\frac{1}{r},r)}$ and μ be its Riesz measure. Then

$$N_{0}(r,u) = \frac{1}{c_{m}r^{m-1}} \int_{S(0,r)} u(x)d\sigma(x) + \frac{r^{2-m}}{c_{m}\left(\frac{1}{r}\right)^{m-1}} \int_{S(0,\frac{1}{r})} u(x)d\sigma(x) - (1+r^{2-m})\frac{1}{c_{m}} \int_{S(0,1)} u(x)d\sigma(x), \ r > 1$$

$$(1)$$

where c_m is the area of the unit sphere and $d\sigma(x)$ is an element of the surface area.

Definition 1. Let u be a subharmonic function in $BL(\frac{1}{r_0}, r_0)$, non identical $-\infty$. The function

$$T_{0}(r,u) := T\left(\frac{1}{r}, r; u\right) = \frac{1}{c_{m}r^{m-1}} \int_{S(0,r)} u^{+}(x)d\sigma(x) + \frac{r^{2-m}}{c_{m}\left(\frac{1}{r}\right)^{m-1}} \int_{S(0,\frac{1}{r})} u^{+}(x)d\sigma(x) - (1+r^{2-m})\frac{1}{c_{m}} \int_{S(0,1)} u^{+}(x)d\sigma(x), \qquad 1 < r < r_{0}$$

$$(2)$$

is called the Nevanlinna characteristic of u, where $u^+ = \max\{u; 0\}$.

Like to its counterpart for subharmonic functions in a ball (see [2], p. 146), the Nevanlinna characteristic $T_0(r, u)$ has elementary properties that have been collected in the following theorem (see [6]):

Theorem 1. Let u, u_1, u_2 be subharmonic functions in $BL(\frac{1}{r_0}, r_0)$, non identical $-\infty$. Then

- a) $T_0(r, u)$ is nonnegative, nondereasing and convex with respect to r^{2-m} , $1 < r < r_0$ and $T_0(1, u) = 0$.
- b) if u is constant then $T_0(r, u)$, $1 < r < r_0$ is identical zero;
- c) $T_0(r, u_1 + u_2) \le T_0(r, u_1) + T_0(r, u_2) + O(1), r \to r_0.$ $T_0(r, \lambda u) = \lambda T_0(r, u) \text{ for } \lambda > 0, 1 < r < r_0.$

Proof. Since u^+ is subharmonic and according to (1), we can rewrite (2) as follows $T_0(r; u) = N_0(r; u^+)$. The function $N_0(r; u^+)$ is nonnegative, nondecreasing and convex with respect to r^{2-m} [2]. Hence, $T_0(r, u)$ satisfies property a). The statement b) immediately follows from Definition 1. Property c) follows from the inequality $(u_1 + u_2)^+ \leq u_1^+ + u_2^+$. \Box

Define

$$m_0(r, u) = \frac{1}{c_m r^{m-1}} \int_{S(0, r)} u^-(x) d\sigma(x) + \frac{r^{2-m}}{c_m \left(\frac{1}{r}\right)^{m-1}} \int_{S(0, \frac{1}{r})} u^-(x) d\sigma(x), \qquad 1 < r < r_0,$$

where $u^- = -\min\{u; 0\}$. Now we can rewrite (2) as follows

Theorem 2. If u is a subharmonic function in $BL(\frac{1}{r_0}, r_0)$ then

$$T_0(r, u) = m_0(r, u) + N_0(r, u) - (1 + r^{2-m}) \frac{1}{c_m} \int_{S(0, 1)} u^-(x) d\sigma(x), \qquad 1 < r < r_0.$$

This is a counterpart of the first fundamental theorem for subharmonic functions on symmetric ball layers. Moreover, we give a comparison of $T_0(r, u)$ with T(r, u) for functions subharmonic in a ball. If a subharmonic function u in $BL(\frac{1}{r_0}, r_0)$ has a subharmonic continuation into $B(0, r_0) = \{x : |x| \le r_0\}, r_0 > 1$, then its classical Nevanlinna characteristic T(r, u) is also determined. By a subharmonic continuation we mean that there exists a subharmonic function u_1 in $B(0, r_0)$ with Riesz measure μ_1 such that $u_1 = u$ on $BL(\frac{1}{r_0}, r_0)$ and the restriction of μ_1 on $BL(\frac{1}{r_0}, r_0)$ is equal to μ , i.e. $\mu_1(\{x : \frac{1}{t} < |x| \le t\}) =$ $\mu(\{x : \frac{1}{t} < |x| \le t\}), 1 < t < r_0$, where μ is the Riesz measure of u. Then, using (1), we have

$$N_0(r, u_1) = N(r, u_1) + r^{2-m} N\left(\frac{1}{r}, u_1\right) - (1 + r^{2-m}) N(1, u_1), \quad 1 < r < r_0,$$
(3)

where $N(r, u_1)$ is defined in [2]. Moreover,

$$T_0(r, u_1) = T(r, u_1) + r^{2-m} T\left(\frac{1}{r}, u_1\right) - (1 + r^{2-m}) T(1, u_1), \quad 1 < r < r_0.$$
(4)

Equality (4) follows from the definitions of $T_0(r, u_1)$ and $T(r, u_1)$ (see [2]) immediately.

Corollary 2. Let u(x) be a subharmonic function, non identical $-\infty$, in $\overline{BL(\frac{1}{r},r)}$ and let μ be the Riesz measure of u(x). Then for $\xi \in BL(\frac{1}{r},r)$

$$u(\xi) = \frac{1}{c_m r^{m-1}} \int_{S(0,r)} u(x) \mathcal{P}_r(\xi, x) d\sigma(x) + \frac{1}{c_m \left(\frac{1}{r}\right)^{m-1}} \int_{S(0,\frac{1}{r})} u(x) \mathcal{P}_{\frac{1}{r}}(\xi, x) d\sigma(x) - \int_{BL(\frac{1}{r},r)} \mathcal{G}(\xi, x) d\mu(x)$$

where

$$\mathcal{P}_{r}(\xi, x) = \sum_{n=0}^{\infty} \frac{2n+m-2}{m-2} \left(\frac{r}{|\xi|}\right)^{n+m-2} \frac{(r|\xi|)^{2n+m-2}-1}{r^{2(2n+m-2)}-1} p_{n}^{\nu}(\cos\phi),$$
$$\mathcal{P}_{\frac{1}{r}}(\xi, x) = (r|\xi|)^{2-m} \sum_{n=0}^{\infty} \frac{2n+m-2}{m-2} \left(\frac{r}{|\xi|}\right)^{n} \frac{r^{2n+m-2}-|\xi|^{2n+m-2}}{r^{2(2n+m-2)}-1} p_{n}^{\nu}(\cos\phi),$$

and

$$\mathcal{G}(\xi, x) = G_r(\xi, x) - \sum_{n=0}^{\infty} \frac{1}{r^{2(2n+m-2)} - 1} \left(\left(\frac{r}{|x|}\right)^{n+m-2} - \left(\frac{|x|}{r}\right)^n \right) \left(\left(\frac{r}{|\xi|}\right)^{n+m-2} - \left(\frac{|\xi|}{r}\right)^n \right)$$

where $G_r(x,\xi)$ is the Green function in the ball of radius r centered at the origin. The convergence is uniform on compact subsets of $BL(\frac{1}{r},r)$.

Set $B_0(r, u) = B(\frac{1}{r}, r; u)$, i.e., $B_0(r, u) = \max\{M(\frac{1}{r}; u); M(r; u)\}, r > 1$ where $M(t; u) = \sup\{u(x): |x| = t\}, t \ge 1$.

Corollary 3. If u(x) is a subharmonic function in $\overline{BL(\frac{1}{r},r)}$, then for $1 < \rho < r$ we have

$$\frac{1}{1+\rho^{2-m}}T_0(\rho;u) \le B_0(\rho;u^+) \le \frac{r^{m-2}(r+\rho)}{(r-\rho)^{m-1}} \Big(T_0(r;u) + \frac{1+r^{2-m}}{c_m} \int\limits_{S(0,1)} u^+(x)d\sigma(x)\Big).$$
(5)

Let S(r) be a real and nonnegative function increasing for $r_0 < r < \infty$, where $r_0 > 0$. The the order λ and the lower order μ of the function S(r) are defined as

$$\lambda = \lim_{r \to \infty} \sup \frac{\log S(r)}{\log r}, \ \mu = \lim_{r \to \infty} \inf \frac{\log S(r)}{\log r},$$

Obviously, the order and the lower order of the function satisfy the relation $0 \le \mu \le \lambda \le \infty$.

Definition 2. If u(x) is a subharmonic function in $\mathbb{R}^m \setminus \{0\}$, then the order λ and the lower order μ of u are called the *order* and the *lower order of* $T_0(r, u)$.

Theorem 3. If u(x) is a subharmonic function in $\mathbb{R}^m \setminus \{0\}$, the order λ and the lower order μ of the functions $T_0(r; u)$ and $B_0(r; u)$ are the same, i.e., $\lambda[u] = \lambda_0[u]$, $\mu[u] = \mu_0[u]$, where

$$\lambda[u] = \lim_{r \to \infty} \sup \frac{\log T_0(r, u)}{\log r}, \ \lambda_0[u] = \lim_{r \to \infty} \sup \frac{\log B_0(r, u)}{\log r},$$
$$\mu[u] = \lim_{r \to \infty} \inf \frac{\log T_0(r)}{\log r}, \ \mu_0[u] = \lim_{r \to \infty} \inf \frac{\log B_0(r)}{\log r}.$$

Proof. The conclusion follows from Corollary 3. Indeed, setting in (5) $r = \gamma \rho, \gamma > 1$, provided u^+ is positive in $|x| = \rho$ for the certain ρ , we get

$$\frac{T_0(r;u)}{1+\rho^{2-m}} \le B_0(\rho;u) \le \frac{\gamma^{m-2}(1+\gamma)}{(\gamma-1)^{m-1}} \Big(T_0(\gamma\rho;u) + \frac{1+(\gamma\rho)^{2-m}}{c_m} \int\limits_{S(0,1)} u^+(x) d\sigma(x) \Big).$$
(6)

From (6) we deduce at once that $\lambda[u] = \lambda_0[u]$ and $\mu[u] = \mu_0[u]$, since the order and the lower order of $T_0(r; u)$ is not greater than that of $B_0(r; u)$ and also that the order and the lower order of $B_0(r; u)$ is not greater than that of $T_0(r; u)$, completing the proof.

Corollary 4. If u(x) is a subharmonic function of finite lower order μ in $\mathbb{R}^m \setminus \{0\}$, then

$$\lim_{r \to \infty} \inf \frac{B_0(r; u)}{T_0(r; u)} \le K(\mu, m),$$

where

$$K(\mu, m) \le 3\left(\frac{2\exp(\mu - 1)}{m - 1}\right)^{m - 1}, \ \mu \ge m, \quad K(\mu, m) \le \left(\frac{2m\exp}{\mu}\right)^{\mu}, \ 0 < \mu < m$$

and K(0, m) = 1.

The proof is similar to that of Theorem 4.3 in ([2], p.166).

5. Representation of a subharmonic extension of a subharmonic function near a removable point. Let BL(s, 1) be the annular region $\{x \in \mathbb{R}^m : s < |x| < 1\}, 0 < s < 1$.

Definition 3. Let D be an open subset of \mathbb{R}^m . If $x_0 \in D$ and u is a subharmonic function in $D \setminus \{x_0\}$ then u is said to have an isolated singularity at the point x_0 .

Definition 4. The singular point x_0 of a subharmonic function u is *removable* if there exists a subharmonic function v in D that coincides with u for all $x \in D \setminus \{x_0\}$. We say that v is a subharmonic extension of u.

Theorem 4. Subharmonic function u in D has a removable singularity at $x_0 \in D$ if and only if there exists a subset $\{x: 0 < |x - x_0| < r\} \subset D$ on which u is bounded from above. Furthermore, the extension v of u can be represented near the removable point in the following way

$$v(x) = \frac{1}{c_m} \int_{S(x_0,1)} u(\xi) P_1(x,\xi) d\sigma(\xi) - \int_{0 < |\xi| < 1} G(x,\xi) d\mu(\xi) - \gamma(|x|^{2-m} - 1)$$
(7)

where $P_1(x,\xi)$ and $G(x,\xi)$ are Poisson's kernel and Green's function for the unit ball respectively,

$$-\gamma = \lim_{s \to x_0} s^{m-2} I(s; u), \quad 0 \le \gamma < \infty, \quad I(s; u) = \frac{1}{c_m s^{m-1}} \int_{S(x_0, s)} u(\xi) d\sigma(\xi).$$
(8)

Recall that $B(x_0, r) = \{x : |x - x_0| < r\}.$

Proof. By Definition 4 and the property of a subharmonic function, the extension v of u is bounded from above on some compact subset of $B(x_0, r)$. Since u coincides with v on $\{x: 0 < |x - x_0| < r\}, u$ is bounded from above there.

Using linear transformation that preserves subharmonicity,

$$x \mapsto x_0 + \frac{r}{2}x$$

one can get a subharmonic function u in BL(0, 2). Since u is bounded from above, there exists a constant C such that $u \leq C$. Without loss of generality, we can consider the function u - Cinstead of u.

Let μ be the Riesz measure of u on BL(0,2). We extend μ to B(0,1) in such a way

$$\nu(E) = \begin{cases} \mu(E) & (0 \notin E) \\ \mu_1 + \mu_2 & (0 \in E), \end{cases}$$
(9)

where $\mu_1 = \mu(E \setminus \{0\})$ and $\mu_2 = \gamma \delta(0)$, $\delta(0)$ is the Dirac delta-function, and E is a Borel set.

In the case $0 \notin E$ the measure $\mu(E)$ is finite as the Riesz measure. In the case $0 \in E$ we have the sum of two measures. Since $\gamma < \infty$, the second measure is finite. Indeed, if we have a convex function f(t) on such an interval $(a, +\infty)$, then there exists such a limit (see [2], p.31)

$$-\infty < \lim_{t \to \infty} \frac{f(t)}{t} \le +\infty.$$

Using the substitution $t = s^{2-m}$, we obtain (8). Note that I(s; u) is a convex function with respect to s^{2-m} ([2], Theorem 2.12, p.81).

Now we prove that $\mu(E \setminus \{0\}) < \infty$. It will be enough to prove that $\mu(BL(0,1)) < \infty$, because $E \setminus \{0\} \subset BL(0,1)$.

Using Definition 1 from [1], we can set n(1) = 0. Hence, we have $\mu(BL(0,1) = n(1) - n(0) = -n(0)$. Fixing $r = r_0$ in Theorem 3 from [1] and considering the limit as s tends to 0, we get

$$\lim_{s \to 0} s^{m-2} \int_{s}^{1} \frac{n(t)}{t^{m-1}} dt \ge -\frac{C}{m-2}$$
(10)

for some constant C that does not depend on s.

Suppose that $n(0) \to -\infty$; then there exists a sequence $\{s_k\}$ of $k \in \mathbb{N}$. In view of this and integrating by parts, we obtain

$$s^{m-2} \int_{s}^{1} \frac{n(t)}{t^{m-1}} dt \le s^{m-2} \int_{s}^{s_{k}} \frac{n(t)}{t^{m-1}} dt \le -s^{m-2} k \int_{s}^{1} \frac{dt}{t^{m-1}} = -\frac{k}{m-2} + \frac{k}{m-2} \frac{s^{m-2}}{s_{k}^{m-2}}$$

As $s \downarrow 0$, we get

$$\lim_{s \to 0} s^{m-2} \int_{s}^{1} \frac{n(t)}{t^{m-1}} \le -\frac{k}{m-2}.$$

That contradicts (10). Hence, $n(0) > -\infty$, i.e., $\mu(BL(0,1)) < \infty$.

Next we consider the function

$$v = u \star P_1 - \int\limits_{B_1} G d\nu,$$

that is subharmonic in $\overline{B(0,1)}$ and $u \star P_1$ is the convolution of u with the Poisson kernel on $\partial B(0,1)$.

Using (9) for all $x \in B(0, 1)$, we have

$$v(x) = \frac{1}{c_m} \int_{S(x_0,1)} u(\xi) P_1(x,\xi) d\sigma(\xi) - \int_{0 < |\xi| < 1} G(x,\xi) d\mu(\xi) - \gamma(|x|^{2-m} - 1).$$

It remains to show that u = v for all $x \in BL(0, 1)$. Let us choose s such that 0 < s < 1and fix x. Applying Poisson-Jensen's Theorem 2 from [1] to a subharmonic function u in BL(s, 1), we obtain

$$\begin{split} u(x) &= \frac{1}{c_m} \int\limits_{S(0,1)} u(\xi) P_1(x,\xi) d\sigma(\xi) - \frac{s^{m-2}}{1-s^{m-2}} \left(|x|^{2-m} - 1 \right) \frac{1}{c_m} \int\limits_{S(0,1)} u(\xi) d\sigma(\xi) - \\ &- \frac{1}{c_m} \int\limits_{S(0,1)} u(\xi) \sum_{n=1}^{\infty} \frac{(2n+m-2)s^{2n+m-2}}{(m-2)(1-s^{2n+m-2})} \left(|x|^{2-m-n} - |x|^n \right) p_n^{\nu}(\cos\phi) d\sigma(\xi) + \\ &+ \frac{1}{(m-2)c_m} \int\limits_{S(0,s)} u(\xi) \left[\frac{|x|\cos\phi - s|}{(s^2+|x|^2-2s|x|\cos\phi)^{\frac{m}{2}}} - |x| \frac{\cos\phi - s|x|}{(s^2|x|^2+1-2s|x|\cos\phi)^{\frac{m}{2}}} \right] d\sigma \\ &- \frac{1}{s(s^{m-2}-1)} \left(|x|^{2-m} - 1 \right) \frac{1}{c_m} \int\limits_{S(0,s)} u(\xi) d\sigma(\xi) + \end{split}$$

$$+\frac{1}{c_m} \int\limits_{S(0,s)} u(\xi) \sum_{n=1}^{\infty} \frac{s^{n-1} + ns^{3n+m-3}}{(m-2)(1-s^{2n+m-2})} \left(|x|^{2-m-n} - |x|^n \right) p_n^{\nu}(\cos\phi) d\sigma(\xi) - \\ -\int\limits_{s<|\xi|<1} G(x,\xi) d\mu(\xi) + \frac{s^{m-2}}{1-s^{m-2}} \left(|x|^{2-m} - 1 \right) \frac{1}{c_m} \int\limits_{s<|\xi|<1} \left(|\xi|^{2-m} - 1 \right) d\mu(\xi) + \\ +\int\limits_{s<|\xi|<1} \sum_{n=1}^{\infty} \frac{s^{2n+m-2}}{(1-s^{2n+m-2})} \left(|x|^{2-m-n} - |x|^n \right) \left(|\xi|^{2-m-n} - |\xi|^n \right) p_n^{\nu}(\cos\phi) d\mu(\xi).$$
(11)

Let us calculate the limit of the right-hand side of (11) as s tends to 0. The first summand does not depend on s. The next one

$$(|x|^{2-m} - 1) \lim_{s \to 0} \frac{s^{m-2}}{1 - s^{m-2}} \frac{1}{c_m} \int_{S(0,1)} u(\xi) d\sigma(\xi) = 0,$$

because u is bounded from above.

Let us estimate the third term. Since $u \leq 0$ and

$$\max\{p_n^{\nu}(x): -1 \le x \le 1\} = C_{n+m-3}^m = \frac{(n+m-3)!}{n!(m-3)!},$$

we get

$$\left|\frac{1}{c_m}\int\limits_{S(0,1)}u(\xi)\sum_{n=1}^{\infty}\frac{(2n+m-2)s^{2n+m-2}}{(m-2)(1-s^{2n+m-2})}\left(|x|^{2-m-n}-|x|^n\right)p_n^{\nu}(\cos\phi)d\sigma(\xi)\right| \leq \\ \leq -\left(\frac{s}{|x|}\right)^{m-2}\sum_{n=1}^{\infty}\frac{(2n+m-2)s^n}{(m-2)(1-s^{2n+m-2})}\left(\frac{s}{|x|}\right)^nC_{n+m-3}^n\frac{1}{c_m}\int\limits_{S(0,1)}u(\xi)d\sigma(\xi) \leq \\$$

choosing $s < \frac{|x|}{2}$, we obtain

$$\leq -\left(\frac{s}{|x|}\right)^{m-2} \sum_{n=1}^{\infty} \frac{(2n+m-2)!}{n!(m-2)!} \left(\frac{1}{2}\right)^{2n-1} \frac{1}{c_m} \int\limits_{S(0,1)} u(\xi) d\sigma(\xi).$$

The last series converges uniformly. Thus, the third term is vanishing as $s \downarrow 0$. Let us estimate the first summand of the forth term

$$\left| \frac{1}{(m-2)c_m} \int\limits_{S(0,s)} u(\xi) \left[\frac{|x|\cos\phi - s}{(s^2 + |x|^2 - 2s|x|\cos\phi)^{\frac{m}{2}}} \right] d\sigma \right| \le \\ \le -\frac{s}{(m-2)} s^{m-2} \frac{1}{c_m s^{m-1}} \int\limits_{S(0,s)} u(\xi) \frac{|x| + s}{(|x| - s)^m} d\sigma(\xi).$$

Since γ is finite, the limit of the summand is 0. The analogous reasonings deal with the other summand of the forth term. Consider the limit of the next addend

$$(|x|^{2-m} - 1) \lim_{s \to 0} \frac{1}{s(s^{m-2} - 1)} \frac{1}{c_m} \int_{S(0,s)} u(\xi) d\sigma(\xi) = (|x|^{2-m} - 1) \lim_{s \to 0} \frac{s^{m-2}}{(s^{m-2} - 1)} I(s; u) =$$
$$= \gamma (|x|^{2-m} - 1).$$

It can be proved in the same manner as it was done for the third term that the limit of the fifth one is 0.

Now we prove that

$$\lim_{s \to 0} \int_{s < |\xi| < 1} G(x,\xi) d\mu(\xi) = \int_{0 < |\xi| < 1} G(x,\xi) d\mu(\xi).$$
(12)

As we know, Green's function has a singularity at the point $x = \xi$, that is why we set $s < s_0 < |x| < 1$, and by the additivity property of Lebesgue's integrals, we have

$$\int_{|\xi|<1} G(x,\xi)d\mu(\xi) = \int_{|\xi|$$

By Proposition from ([7], p. 20),

$$\int_{|\xi| < s_0} G(x,\xi) d\mu(\xi) = \mu\{\xi \colon s < |\xi| < s_0\}$$

and by the property of measure continuity (see [7], p. 16), there exists a sequence $\{s_n\}$ with $n \in \mathbb{N}$ such that

$$\lim_{n \to \infty} \int_{s_n < |\xi| < s_0} G(x,\xi) d\mu(\xi) = \int_{0 < |\xi| < s_0} G(x,\xi) d\mu(\xi)$$

Hence, we have proved (12).

Now we consider the limit of the eighth addend

$$(|x|^{2-m} - 1) \lim_{s \to 0} \frac{s^{m-2}}{1 - s^{m-2}} \int_{s < |\xi| < 1} (|\xi|^{2-m} - 1) d\mu(\xi) =$$
$$= (|x|^{2-m} - 1) \left[\lim_{s \to 0} \frac{s^{m-2}}{1 - s^{m-2}} \int_{s < |\xi| < 1} \frac{d\mu(\xi)}{|\xi|^{m-2}} - \lim_{s \to 0} \frac{s^{m-2}}{1 - s^{m-2}} \int_{s < |\xi| < 1} d\mu(\xi) \right].$$

Since the measure $\mu(BL(0,1))$ is finite, the last summand is vanishing.

Consider

$$s^{m-2} \int_{s<|\xi|<1} |\xi|^{2-m} d\mu(\xi) = s^{m-2} \int_{s}^{1} \frac{dn(t)}{t^{m-2}}.$$
(13)

1

Integrating the right-hand side of (13) by parts, we obtain

$$s^{m-2} \Big(n(1) - \frac{n(s)}{s^{m-2}} + (m-2) \int_{s}^{1} \frac{n(t)}{t^{m-1}} dt \Big).$$
(14)

The limit of (14) as $s \downarrow 0$ is

$$-n(0) + (m-2)\lim_{s \to 0} s^{m-2} \int_{s}^{1} \frac{n(t)}{t^{m-1}} dt.$$
 (15)

Since

$$(m-2)s^{m-2}\int_{s}^{1}\frac{n(t)}{t^{m-1}}dt = (m-2)s^{m-2}\int_{s}^{\sqrt{s}}\frac{n(t)}{t^{m-1}}dt + (m-2)s^{m-2}\int_{\sqrt{s}}^{1}\frac{n(t)}{t^{m-1}}dt \le (m-2)s^{m-2}n(\sqrt{s})\left.\frac{t^{2-m}}{2-m}\right|_{s}^{\sqrt{s}} + (m-2)s^{m-2}n(1)\left.\frac{t^{2-m}}{2-m}\right|_{\sqrt{s}}^{1} = n(0).$$

We conclude that (15) is 0.

Now we estimate the last term of (11)

$$\left| \int_{s<|\xi|<1} \sum_{n=1}^{\infty} \frac{s^{2n+m-2}}{(1-s^{2n+m-2})} \left(|x|^{2-m-n} - |x|^n \right) \left(|\xi|^{2-m-n} - |\xi|^n \right) p_n^{\nu}(\cos\phi) d\mu(\xi) \right| \le \\ \le \frac{s}{|x|^{m-2}} \int_{0<|\xi|<1} \sum_{n=1}^{\infty} \frac{C_{n+m-3}^n}{1-s^{2n+m-2}} \left(\frac{s}{|x|} \right)^n \left(\frac{s}{|\xi|} \right)^n \frac{d\mu(\xi)}{|\xi|^{m-2}} \le \\ \le \frac{s}{|x|^{m-2}} \sum_{n=1}^{\infty} C_{n+m-3}^n s_1^n \left(\frac{1}{2} \right)^{2n-1} \int_{0<|\xi|<1} \frac{d\mu(\xi)}{|\xi|^{m-2}}, \ s_1 < 1.$$

The last series converges uniformly and the last term is vanishing. The proof is completed. \Box

6. Comparison of T(+0, r; u) and T(r, u) for subharmonic functions extended into a ball. We consider bounded from above subharmonic functions in BL(0, r). According to Theorem 3, such functions are extended to B(0, r).

Using Theorem 3 from [1] and (8), we get

$$\begin{split} \lim_{s \to 0} N(s,r;u) &= \frac{1}{1 - r^{2-m}} \Big(\frac{1}{c_m r^{m-1}} \int\limits_{S(0,r)} u(x) d\sigma(x) - \frac{1}{c_m} \int\limits_{S(0,1)} u(x) d\sigma(x) \Big) - \\ &- \lim_{s \to 0} \frac{s^{m-2}}{1 - s^{m-2}} \frac{1}{c_m} \int\limits_{S(0,1)} u(x) d\sigma(x) + \lim_{s \to 0} \frac{s^{m-2}}{1 - s^{m-2}} \frac{1}{c_m s^{m-1}} \int\limits_{S(0,s)} u(x) d\sigma(x) = \\ &= \frac{1}{1 - r^{2-m}} \Big(\frac{1}{c_m r^{m-1}} \int\limits_{S(0,r)} u(x) d\sigma(x) - \frac{1}{c_m} \int\limits_{S(0,1)} u(x) d\sigma(x) \Big) - \gamma. \end{split}$$

Hence,

$$(1 - r^{2-m})(N(+0, r; u) + \gamma) = \frac{1}{c_m r^{m-1}} \int_{S(0, r)} u(x) d\sigma(x) - \frac{1}{c_m} \int_{S(0, 1)} u(x) d\sigma(x).$$

Suppose $u(0) \neq -\infty$. According to [2], we have

$$(1 - r^{2-m})(N(+0, r; u) + \gamma) = N(r, u) - N(1, u).$$

Moreover (see, definition 2 from [1]),

$$\lim_{s \to 0} T(s,r;u) = \frac{1}{1 - r^{2-m}} \frac{1}{c_m r^{m-1}} \int_{S(0,r)} u^+(x) d\sigma(x) + \lim_{s \to 0} \frac{s^{m-2}}{1 - s^{m-2}} \frac{1}{c_m s^{m-1}} \int_{S(0,s)} u^+(x) d\sigma(x) - \frac{1}{c_m r^{m-1}} \int_{S(0,s)} u^+(x) d\sigma(x) d\sigma(x) d\sigma(x) d\sigma(x) + \frac{1}{c_m r^{m-1}} \int_{S(0,s)} u^+(x) d\sigma(x) d\sigma($$

$$-\frac{1}{1-r^{2-m}} \int_{S(0,1)} u^{+}(x) d\sigma(x) - \lim_{s \to 0} \frac{s^{m-2}}{1-s^{m-2}} \int_{S(0,1)} u^{+}(x) d\sigma(x).$$
(16)

Since u^+ is a subharmonic and bounded from above function, we apply Theorem 3 to u^+ . Denote

$$\lim_{s \to 0} s^{m-2} \frac{1}{c_m s^{m-1}} \int_{S(0,s)} u^+(x) d\sigma(x) = -\gamma_1.$$

As far as $0 \leq \gamma_1 < \infty$ and $u^+ = \max\{u; 0\}$, we have that $\gamma_1 = 0$. Thus,

$$(1 - r^{2-m})T(+0, r; u) = T(r, u) - T(1, u).$$
(17)

Equality (17) follows from (16) and from the definition of T(r, u) (see [2]) immediately. Note that (17) is true in both cases $u(0) = -\infty$ and $u(0) \neq -\infty$.

REFERENCES

- Gnatiuk O.P., Kondratyuk A.A. Subharmonic functions in ball layers. I// Mat. Stud. 2010. V.34, №2. – P. 180–192.
- 2. Hayman W.K., Kennedy P.B. Subharmonic functions Mir, Moscow, 1980. (in Russian)
- Gardiner S.J. Removable singularities for subharmonic functions// Pac. J. Math. 1991. V.147. P. 71–80.
- 4. Riihentaus J. Removable sets for subharmonic functions// Pac. J. Math. 2000. V.194. P. 199-208.
- 5. Klimek M. Pluripotential theory. Clarendon Press, 1991, 59 p.
- Kondratyuk A., Laine I. Meromorphic functions in multiply connected domains, Univ. Joensuu Dept. Math. Rep. Ser. - 2006. - V.10. - P. 9-111.
- 7. Rudin W. Real and complex analysis, McGraw-Hill, New York, 1970.

Faculty of Mechanics and Mathematics Lviv National University Universytets'ka 1, 79000, Lviv kond@franko.lviv.ua oksanka.gnatyuk@gmail.com

Received 16.09.10